Overview
Group
Quick Info

Windows NT
Yes
Win95
Yes
Win32s
Yes
Import Library
kernel32.lib
Header File
winbase.h
Unicode
No
Platform Notes
None

VirtualAlloc

The VirtualAlloc function reserves or commits a region of pages in the virtual address space of the calling process. Memory allocated by this function is automatically initialized to zero.

LPVOID VirtualAlloc(

LPVOID lpAddress,
// address of region to reserve or commit
DWORD dwSize,
// size of region
DWORD flAllocationType,
// type of allocation
DWORD flProtect
// type of access protection
);

Parameters

lpAddress

Specifies the desired starting address of the region to allocate. If the memory is being reserved, the specified address is rounded down to the next 64-kilobyte boundary. If the memory is already reserved and is being committed, the address is rounded down to the next page boundary. To determine the size of a page on the host computer, use the GetSystemInfo function. If this parameter is NULL, the system determines where to allocate the region.

dwSize

Specifies the size, in bytes, of the region. If the lpAddress parameter is NULL, this value is rounded up to the next page boundary. Otherwise, the allocated pages include all pages containing one or more bytes in the range from lpAddress to (lpAddress+dwSize). This means that a 2-byte range straddling a page boundary causes both pages to be included in the allocated region.

flAllocationType

Specifies the type of allocation. You can specify any combination of the following flags:

Flag
Meaning
MEM_COMMIT
Allocates physical storage in memory or in the paging file on disk for the specified region of pages.

An attempt to commit an already committed page will not cause the function to fail. This means that a range of committed or decommitted pages can be committed without having to worry about a failure.
MEM_RESERVE
Reserves a range of the process's virtual address space without allocating any physical storage. The reserved range cannot be used by any other allocation operations (the malloc function, the LocalAlloc function, and so on) until it is released. Reserved pages can be committed in subsequent calls to the VirtualAlloc function.
MEM_TOP_DOWN
Allocates memory at the highest possible address.

flProtect

Specifies the type of access protection. If the pages are being committed, any one of the following flags can be specified, along with the PAGE_GUARD and PAGE_NOCACHE protection modifier flags, as desired:

Flag
Meaning
PAGE_READONLY
Enables read access to the committed region of pages. An attempt to write to the committed region results in an access violation. If the system differentiates between read-only access and execute access, an attempt to execute code in the committed region results in an access violation.
PAGE_READWRITE
Enables both read and write access to the committed region of pages.
PAGE_EXECUTE
Enables execute access to the committed region of pages. An attempt to read or write to the committed region results in an access violation.
PAGE_EXECUTE_READ
Enables execute and read access to the committed region of pages. An attempt to write to the committed region results in an access violation.
PAGE_EXECUTE_READWRITE
Enables execute, read, and write access to the committed region of pages.
PAGE_GUARD
Pages in the region become guard pages. Any attempt to read from or write to a guard page causes the operating system to raise a STATUS_GUARD_PAGE exception and turn off the guard page status. Guard pages thus act as a one-shot access alarm.
The PAGE_GUARD flag is a page protection modifier. An application uses it with one of the other page protection flags, with one exception: It cannot be used with PAGE_NOACCESS. When an access attempt leads the operating system to turn off guard page status, the underlying page protection takes over.
If a guard page exception occurs during a system service, the service typically returns a failure status indicator.
PAGE_NOACCESS
Disables all access to the committed region of pages. An attempt to read from, write to, or execute in the committed region results in an access violation exception, called a general protection (GP) fault.
PAGE_NOCACHE
Allows no caching of the committed regions of pages. The hardware attributes for the physical memory should be specified as "no cache." This is not recommended for general usage. It is useful for device drivers; for example, mapping a video frame buffer with no caching. This flag is a page protection modifier, only valid when used with one of the page protections other than PAGE_NOACCESS.

Return Values

If the function succeeds, the return value is the base address of the allocated region of pages.

If the function fails, the return value is NULL. To get extended error information, call GetLastError.

Remarks

VirtualAlloc
can perform the following operations:

  • Commit a region of pages reserved by a previous call to the VirtualAlloc function.

  • Reserve a region of free pages.

  • Reserve and commit a region of free pages.

You can use VirtualAlloc to reserve a block of pages and then make additional calls to VirtualAlloc to commit individual pages from the reserved block. This enables a process to reserve a range of its virtual address space without consuming physical storage until it is needed.

Each page in the process's virtual address space is in one of three states:

State
Meaning
Free
The page is not committed or reserved and is not accessible to the process. VirtualAlloc can reserve, or simultaneously reserve and commit, a free page.
Reserved
The range of addresses cannot be used by other allocation functions, but the page is not accessible and has no physical storage associated with it. VirtualAlloc can commit a reserved page, but it cannot reserve it a second time. The VirtualFree function can release a reserved page, making it a free page.
Committed
Physical storage is allocated for the page, and access is controlled by a protection code. The system initializes and loads each committed page into physical memory only at the first attempt to read or write to that page. When the process terminates, the system releases the storage for committed pages. VirtualAlloc can commit an already committed page. This means that you can commit a range of pages, regardless of whether they have already been committed, and the function will not fail. VirtualFree can decommit a committed page, releasing the page's storage, or it can simultaneously decommit and release a committed page.

If the lpAddress parameter is not NULL, the function uses the lpAddress and dwSize parameters to compute the region of pages to be allocated. The current state of the entire range of pages must be compatible with the type of allocation specified by the flAllocationType parameter. Otherwise, the function fails and none of the pages are allocated. This compatibility requirement does not preclude committing an already committed page; see the preceding list.

The PAGE_GUARD protection modifier flag establishes guard pages. Guard pages act as one-shot access alarms. See Guard Pages.

See Also

GlobalAlloc
, HeapAlloc, VirtualFree, VirtualLock, VirtualProtect, VirtualQuery

Software for developers
Delphi Components
.Net Components
Software for Android Developers
More information resources
MegaDetailed.Net
Unix Manual Pages
Delphi Examples
Databases for Amazon shops developers
Amazon Categories Database
Browse Nodes Database